Buscar este blog

sábado, 29 de mayo de 2010

EJEMPLOS DE CIRCUITOS ELECTRICOS

Circuito en serie

circuito001

Circuito en paralelo

circuito002

Circuito con un timbre en serie con dos ampolletas en paralelo

circuito003

Circuito con una ampolleta en paralelo con dos en serie

circuito004

Circuito con dos pilas en paralelo

circuito005

LEY DE OHM Y KIRCHHOFF

LEY DE OHM
La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.


Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación en circuitos paralelos.


Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias. Si las resistencias están en paralelo, el valor total de la resistencia del circuito se obtiene mediante la fórmula

LEY DE KIRCHHOFF

Si un circuito tiene un número de derivaciones interconectadas, es necesario aplicar otras dos leyes para obtener el flujo de corriente que recorre las distintas derivaciones. Estas leyes, descubiertas por el físico alemán Gustav Robert Kirchhoff, son conocidas como las leyes de Kirchhoff. La primera, la ley de los nudos, enuncia que en cualquier unión en un circuito a través del cual fluye una corriente constante, la suma de las intensidades que llegan a un nudo es igual a la suma de las intensidades que salen del mismo. La segunda ley, la ley de las mallas afirma que, comenzando por cualquier punto de una red y siguiendo cualquier trayecto cerrado de vuelta al punto inicial, la suma neta de las fuerzas electromotrices halladas será igual a la suma neta de los productos de las resistencias halladas y de las intensidades que fluyen a través de ellas. Esta segunda ley es sencillamente una ampliación de la ley de Ohm.

LEYES TERMODINAMICAS

Primera ley de la termodinámica

Permítase que un sistema cambie de un estado inicial de equilibrio , a un estado final de equilibrio , en un camino determinado, siendo el calor absorbido por el sistema y el trabajo hecho por el sistema. Después calculamos el valor de . A continuación cambiamos el sistema desde el mismo estado hasta el estado final , pero en esta ocasión por u n camino diferente. Lo hacemos esto una y otra vez, usando diferentes caminos en cada caso. Encontramos que en todos los intentos es la misma. Esto es, aunque y separadamente dependen del camino tomado, no depende, en lo absoluto, de cómo pasamos el sistema del estado al estado , sino solo de los estados inicial y final (de equilibrio).

Podemos expresar la primera ley en palabras diciendo: Todo sistema termodinámico en un estado de equilibrio, tiene una variable de estado llamada energía interna cuyo cambio en un proceso diferencial está dado por la ecuación antes escrita.

La primera ley de la termodinámica se aplica a todo proceso de la naturaleza que parte de un estado de equilibrio y termina en otro. Decimos que si un sistema esta en estado de equilibrio cuando podemos describirlo por medio de un grupo apropiado de parámetros constantes del sistema como presión ,el volumen, temperatura, campo magnético y otros la primera ley sigue verificándose si los estados por los que pasa el sistema de un estado inicial (equilibrio), a su estado final (equilibrio), no son ellos mismos estados de equilibrio. Por ejemplo podemos aplicar la ley de la termodinámica a la explosión de un cohete en un tambor de acero cerrado.

Hay algunas preguntas importantes que no puede decir la primera ley. Por ejemplo, aunque nos dice que la energía se conserva en todos los procesos, no nos dice si un proceso en particular puede ocurrir realmente. Esta información nos la da una generalización enteramente diferente, llamada segunda ley de la termodinámica, y gran parte de los temas de la termodinámica dependen de la segunda ley.

Segunda ley de la termodinámica.

Las primeras máquinas térmicas construidas, fueron dispositivos muy eficientes. Solo una pequeña fracción del calor absorbido de la fuente de la alta temperatura se podía convertir en trabajo útil. Aun al progresar los diseños de la ingeniería, una fracción apreciable del calor absorbido se sigue descargando en el escape de una máquina a baja temperatura, sin que pueda convertirse en energía mecánica. Sigue siendo una esperanza diseñar una maquina que pueda tomar calor de un depósito abundante, como el océano y convertirlo íntegramente en un trabajo útil. Entonces no seria necesario contar con una fuente de calor una temperatura más alta que el medio ambiente quemando combustibles. De la misma manera, podría esperarse, que se diseñara un refrigerador que simplemente transporte calor, desde un cuerpo frío a un cuerpo caliente, sin que tenga que gastarse trabajo exterior. Ninguna de estas aspiraciones ambiciosas violan la primera ley de la termodinámica. La máquina térmica sólo podría convertir energía calorífica completamente en energía mecánica, conservándose la energía total del proceso. En el refrigerador simplemente se transmitiría la energía calorifica de un cuerpo frío a un cuerpo caliente, sin que se perdiera la energía en el proceso. Nunca se ha logrado ninguna de estas aspiraciones y hay razones para que se crea que nunca se alcanzarán.

La segunda ley de la termodinámica, que es una generalización de la experiencia, es una exposición cuyos artificios de aplicación no existen. Se tienen muchos enunciados de la segunda ley, cada uno de los cuales hace destacar un aspecto de ella, pero se puede demostrar que son equivalentes entre sí. Clausius la enuncio como sigue: No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación). Este enunciado desecha la posibilidad de nuestro ambicioso refrigerador, ya que éste implica que para transmitir calor continuamente de un objeto frío a un objeto caliente, es necesario proporcionar trabajo de un agente exterior. Por nuestra experiencia sabemos que cuando dos cuerpos se encuentran en contacto fluye calor del cuerpo caliente al cuerpo frío. En este caso, la segunda ley elimina la posibilidad de que la energía fluya del cuerpo frío al cuerpo caliente y así determina la dirección de la transmisión del calor. La dirección se puede invertir solamente por medio de gasto de un trabajo.

Kelvin (con Planck) enuncio la segunda ley con palabras equivalentes a las siguientes: es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. Este enunciado elimina nuestras ambiciones de la máquina térmica, ya que implica que no podemos producir trabajo mecánico sacando calor de un solo depósito, sin devolver ninguna cantidad de calor a un depósito que esté a una temperatura más baja.

Para demostrar que los dos enunciados son equivalentes, necesitamos demostrar que si cualquiera de los enunciados es falso, el otro también debe serlo. Supóngase que es falso el enunciado de Clausius, de tal manera que se pudieran tener un refrigerador que opere sin que se consuma el trabajo. Podemos usar una máquina ordinaria para extraer calor de un cuerpo caliente, con el objeto de hacer trabajo y devolver parte del calor a un cuerpo frío.

La segunda ley nos dice que muchos procesos son irreversibles. Por ejemplo, el enunciado de Clausius específicamente elimina una inversión simple del proceso de transmisión de calor de un cuerpo caliente, a un cuerpo frío. Algunos procesos, no sólo no pueden regresarse por sí mismos, sino que tampoco ninguna combinación de procesos pueden anular el efecto de un proceso irreversible, sin provocar otro cambio correspondiente en otra parte.

Tercera ley de la termodinámica.

En el análisis de muchas reacciones químicas es necesario fijar un estado de referencia para la entropia. Este siempre puede escogerse algún nivel arbitrario de referencia cuando solo se involucra un componente; para las tablas de vapor convencionales se ha escogido 320F. Sobre la base de las observaciones hechas por Nernst y por otros, Planck estableció la tercera ley de la termodinámica en 1912, así:

la entropia de todos los sólidos cristalinos perfectos es cero a la temperatura de cero absoluto.

Un cristal “perfecto” es aquel que esta en equilibrio termodinámica. En consecuencia, comúnmente se establece la tercera ley en forma más general, como:

La entropia de cualquier sustancia pura en equilibrio termodinamico tiende a cero a medida que la temperatura tiende a cero.

La importancia de la tercera ley es evidente. Suministra una base para el calculo de las entropías absolutas de las sustancias, las cuales pueden utilizarse en las ecuaciones apropiadas para determinar la dirección de las reacciones químicas.

EJEMPLOS DE EQUILIBRIO TRASLACIONAL

1.-Dibuje y marque las condiciones del problema.

2.-Trace un diagrama de cuerpo libre.

3.-Resuelva todas las fuerzas por componentes.

4.-Utilice la Primera Condición de Equilibrio para platear dos ecuaciones en términos de las fuerzas desconocidas.

5.-Resuelva algebraicamente los factores desconocidos.

Fx Fy
ACos 45º ASen 45º
BCos 150º BSen 150º
300*Cos 270º 300*Sen 270º

Fx=ACos 45º+BCos 150º+ 300* Cos 270º=0
Fy=ASen 45º+BSen150º+ 300* Sen 270º=0

Fx=0.707A- 0.866B =0
Fy=0.707A+0.5B - 300=0

0.707A - 0.866 B= 0
0.707A+ 0.5B =300

0.707A - 0.866B=0
0.707 A = 0.866B

A=(0.866/0.707)B = 1.22B
(0.707)(1.22B)+0.5B=300
0.862B+0.5B=300
1.362B=300
B=300/1.362= 220.26
B= 220.26 N A=268.71 N

2.-Una pelota de 300N cuelga atada a otras dos cuerdas, como se observa en la figura. Encuentre las tensiones en las cuerdas A, B Y C.



SOLUCIÓN:

El primer paso es construir un diagrama de cuerpo libre:


Al sumar las fuerzas a lo largo del eje X obtenemos :

S Fx = -A cos 60° + B cos 40° = 0

Al simplificarse por sustitución de funciones trigonométricas conocidas tenemos:

-0.5A + 0.7660B = 0 (1)

Obtenemos una segunda ecuación sumando las fuerzas a lo largo del eje Y, por lo tanto tenemos:

(Cos 30° + cos 50° )

0.8660A + 0 .6427B = 300N (2)

En las ecuaciones 1 y 2 se resuelven como simultanea A y B mediante el proceso de sustitución. Si despejamos A tenemos:

A = 0.7660 / 0.5

A = 1.532B


Ahora vamos a sustituir esta igualdad en la ecuación 2

0.8660(1.532B) + 0.6427B = 300N


Para B tenemos:

1.3267B + 0.6427B = 300N


1.9694B = 300N

B= 300N / 1.9694


B= 152.33N


Para calcular la tensión en A sustituimos B = 152.33 N

A = 1.532(152.33N) = 233.3N

La tensión en la cuerda C es 300N , puesto que debe ser igual al peso.

EQULIBRIO TRASLACIONAL



Equilibrio Traslacional

Un cuerpo se encuentra en equilibrio traslacional cuando la sumatoria de todas las componentes en X es igual a 0 y todas las componentes en Y es igual a 0.

Cuando un cuerpo esta en equilibrio traslacional no tiene fuerza resultante actuando sobre el.

Primera Ley de Equilibrio:
Un cuerpo se encuentra en equilibrio si y sólo si la suma vectorial de las fuerzas que actúna sobre el es igual a 0.

Fx=Ax+Bx+Cx+Dx.......=0
Fy=Ay+By+Cy+Dy.......=0

EJEMPLOS DE MOVIMIENTO CIRCULAR


1.-Una moneda situada a 30 cm del centro de una mesa giratoria horizontal que esta en rotación se desliza cuando su velocidad es 50 cm/seg.

a) Que origina la fuerza central cuando la moneda esta estacionaria en relación con la mesa giratoria?

b) Cual es el coeficiente de fricción estático entre la moneda y la mesa giratoria?

∑ FY = 0

N – m g = 0

N = m g

FR = μ N = μ m g

FR = μ m g

μ = 0,085

2.-Un automóvil que viaja inicialmente hacia el ESTE vira hacia el NORTE en una trayectoria circular con rapidez uniforme como se muestra en la figura p6-12. La longitud del arco ABC es 235 metros y el carro completa la vuelta en 36 seg.

a) Cual es la aceleración cuando el carro se encuentra en B localizado a un ángulo de 350. Exprese su respuesta en función de los vectores unitarios i y j.

Determine

b) la rapidez promedio del automóvil

c) Su aceleración promedio durante el intervalo de 36 seg.


Longitud del arco total = 2 p r

Longitud de un cuarto de cuadrante = 2 p r/ 4 = p r/ 2

2 * long. De un cuarto de cuadrante = p r

a) Cual es la aceleración

ax = - a sen 35 i = - 0,28476 sen35 i = - 0,28476 * ‘0,5735 i = - 0,163 i

ay = - a cos 35 j = - 0,28476 sen35 j = - 0,28476 * ‘0,8191 j = - 0,233 j

c) Su aceleración promedio

VF = V0 + at

VF - V0 = at

EJEMPLOS DE MOVIMIENTO CIRCULAR

MOVIMIENTO CIRCULAR



Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Una vez situado el origen O de ángulos describimos el movimiento circular mediante las siguientes magnitudes.

Posición angular, q


En el instante t el móvil se encuentra en el punto P. Su posición angular viene dada por el ángulo q, que hace el punto P, el centro de la circunferencia C y el origen de ángulos O.

El ángulo q, es el cociente entre la longitud del arco s y el radio de la circunferencia r, q=s/r. La posición angular es el cociente entre dos longitudes y por tanto, no tiene dimensiones.
Velocidad angular, w
En el instante t' el móvil se encontrará en la posición P' dada por el ángulo q '. El móvil se habrá desplazado Dq=q ' -q en el intervalo de tiempo Dt=t'-t comprendido entre t y t'.


Se denomina velocidad angular media al cociente entre el desplazamiento y el tiempo.

Expresando los dos desplazamientos componentes como A y B, indicados en la figura, y usando unitarios, tenemos:
R = A + B. R es el vector resultante buscado, cuya magnitud se
denota y cuya dirección puede determinarse calculando el ángulo .
A = 20 km j, (apunta hacia el Norte).
B debemos descomponerlo en componentes x e y (ó i y j )

B = -(35 km)sen60ºi + (35 km)cos60ºj = -30.3 kmi + 17.5 kmj

Luego,
R = 20 kmj - 30.3 kmi + 17.5 kmj = 37.5j - 30.3i.
La magnitud se obtiene de

2 = (37.5km)2 + (30.3km)2 = 48.2 km

La dirección de R la determinaremos calculando el ángulo .
En el triángulo formado por cateto opuesto 30.3 y cateto adyacente 37.5, tg = 30.3/37.5 = arctg(30.3/37.5) = 38.9º.